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Path in R2

A path in the plane R2 is a di�erentiable function f : [a, b]→ R2,
given by f (t) = (x(t), y(t)), where x(t) and y(t) are di�erentiable
functions of t and where [a, b] is some interval in R. �e image of an
interval [a, b] under a path f is a curve in R2.



Euclidean length

�e Euclidean length of f is given by the integral

length(f ) =

∫ b

a

√
(x′(t))2 + (y′(t))2dt,

where
√

(x′(t))2 + (y′(t))2dt is the element of arc-length in R2.



If we view f as a path into C instead of R2 and write
f (t) = x(t) + y(t)i, we can rewrite the integral as

length(f ) =

∫ b

a

√
(x′(t))2 + (y′(t))2dt =

∫ b

a
|f ′(t)|dt,

and represent the standard element of arc-length in C as

|dz| = |f ′(t)|dt.



Path Integral

Let ρ : C→ R be a continuous function. For a di�erentiable path
f : [a, b]→ C, we de�ne the length of f with respect to the element
of arc-length ρ(z)|dz| to be the path integral

lengthρ(f ) =

∫
f
ρ(z)|dz| =

∫ b

a
ρ(f (t))|f ′(t)|dt.



�estion: What will happen to the length of a path f : [a, b]→ C
with respect to the element of arc-length ρ(z)|dz| when the domain
of f is changed?
i.e. Suppose h : [α, β]→ [a, b] is a surjective di�erentiable function
such that [a, b] = h([α, β]), and construct a new path by taking the
composition g = f ◦ h. How are lengthρ(f ) and lengthρ(g) related?



�e length of f with respect to ρ(z)|dz| is the path integral

lengthρ(f ) =

∫
f
ρ(z)|dz|

=

∫ b

a
ρ(f (t))|f ′(t)|dt,

while the length of g with respect to ρ(z)|dz| is the path integral

lengthρ(g) =

∫ β

α
ρ(g(t))|g′(t)|dt

=

∫ β

α
ρ((f ◦ h)(t))|(f ◦ h)′(t)|dt

=

∫ β

α
ρ(f (h(t)))|(f ′(h(t))||h′(t)|dt.



If h′(t) ≥ 0 for all t in [α, β], then

lengthρ(g) =

∫ β

α
ρ(f (h(t)))|(f ′(h(t))||h′(t)|dt

=

∫ b

a
ρ(f (s))|f ′(s)|ds = lengthρ(f ).

with substitution s = h(t).
If h′(t) ≤ 0 for all t in [α, β], then

lengthρ(g) =

∫ β

α
ρ(f (h(t)))|(f ′(h(t))||h′(t)|dt

= −
∫ b

a
ρ(f (s))|f ′(s)|ds = lengthρ(f ).

with substitution s = h(t).



So if either h′(t) ≥ 0 or h′(t) ≤ 0 for all t in [α, β], we have

lengthρ(f ) = lengthρ(f ◦ h),

where f : [a, b]→ C is a piecewise di�erentiable path and
h : [α, β]→ [a, b] is di�erentiable. In this case, we refer to f ◦ h as a
reparametriaztion of f .



Proposition 1

Let f : [a, b]→ C be a piecewise di�erentiable path, let [α, β] be
another interval, and let h : [α, β]→ [a, b] be a surjective
di�erentiable function. Let ρ(z)|dz| be an element of arc-length on
C. �en

lengthρ(f ◦ h) ≥ lengthρ(f ).



Let ρ(z)|dz| be an element of arc-length on H that is a conformal
distortion of the standard element of arc-length, so that the length of
a piecewise di�erentiable path f : [a, b]→ H is given by the integral

lengthρ(f ) =

∫
f
ρ(z)|dz| =

∫ b

a
ρ(f (t))|f ′(t)|dt.

By the phrase length is invariant under the action of Möb(H), for
every piecewise di�erentiable path f : [a, b]→ H and every element
γ of Möb(H), we have

lengthρ(f ) = lengthρ(γ ◦ f ).



Proposition 2

Let γ be a Möbius transformation of H. Let z, z′ ∈ H and let δ be a
path from z to z′. �en lengthH(γ ◦ δ) = lengthH(δ).

Proof.
Let γ(z) = az+b

cz+d where a, b, c, d ∈ R and ad − bc > 0. It is an easy
calculation to check that for any z ∈ H,

|γ′(z)| = ad − bc
|cz + d|2

and
Im(γ(z)) =

ad − bc
|cz + d|2

Im(z).



Let δ : [0, 1]→ H be a parametrization of δ. �en by chain rule,

lengthH(γ ◦ δ) =

∫ 1

0

|(γ ◦ δ)′(t)|
Im(γ ◦ δ)(t)

dt

=

∫ 1

0

|γ′(δ(t))||δ′(t)|
Im(γ ◦ δ)(t)

dt

=

∫ 1

0

ad − bc
|cδ(t) + d|2

|δ′(t)| |cδ(t) + d|2

ad − bc
1

Im(δ(t))
dt

=

∫ 1

0

|δ′(t)|
Im(δ(t))

dt

= lengthH(δ).



Since

lengthρ(γ ◦ f ) =

∫ b

a
ρ((γ ◦ f )(t))|(γ ◦ f )′(t))|dt

=

∫ b

a
ρ((γ ◦ f )(t))|γ′(f (t))||f ′(t)|dt

and

lengthρ(f ) =

∫ b

a
ρ(f (t))|f ′(t)|dt,

we have∫ b

a
ρ(f (t))|f ′(t)|dt =

∫ b

a
ρ((γ ◦ f )(t))|γ′(f (t))||f ′(t)|dt

for every piecewise di�erentiable path f : [a, b]→ H and every
element γ of Möb+(H).



Equivalently, this can be wri�en as∫ b

a
(ρ(f (t))− ρ((γ ◦ f )(t))|γ′(f (t))|)|f ′(t)|dt = 0

for every piecewise di�erentiable path f : [a, b]→ H and every
element γ of Möb+(H).
For an element γ of Möb+(H), set

µγ(z) = ρ(z)− ρ(γ(z))|γ′(z)|,

so that the condition on ρ(z) becomes a condition on µγ(z), that is∫
f
µγ(z)|dz| =

∫ b

a
µγ(f (t))|f ′(t)|dt = 0

for every piecewise di�erentiable path f : [a, b]→ H and every
element γ of Möb+(H).



Lemma 3

Let D of an open set of C, let µ : D → R be a continuous function,
and suppose that

∫
f µ(z)|dz| = 0 for every piecewise di�erentiable

path f : [a, b]→ D. �en µ ≡ 0.



Proof

We do by contradiction.
Suppose there exists a point z ∈ D at which µ(z) 6= 0. Replacing µ
by −µ if necessary, we may assume that µ(z) > 0.
Since µ is continuous, for each ε > 0, there exists δ > 0 such that
Uδ(z) ⊂ D and w ∈ Uδ(z) implies that µ(w) ∈ Uε(µ(z)), where

Uδ(z) = u ∈ C : |u − z| < δ

and
Uε(t) = s ∈ R : |s − t| < ε.



Taking ε = 1
3 |µ(z)|, we see that there exists δ > 0 so that w ∈ Uδ(z)

implies that µ(w) ∈ Uε(µ(z)). Using the triangle inequality and the
fact that µ(z) > 0, this implies that µ(w) > 0 for all w ∈ Uδ(z).
We now choose a speci�c non-constant piecewise di�erentiable
path, namely the path f : [0, 1]→ Uδ(z) given by

f (t) = z +
1
3
δt.

Observe that µ(f (t)) > 0 for all t in [0, 1], since f (t) ∈ Uδ(z) for all t
in [0,1]. In particular, we have that

∫
f µ(z)|dz| > 0, which gives the

desired contradiction.



Hence by the lemma, we have

µγ(z) = ρ(z)− ρ(γ(z))|γ′(z)| = 0

for every z ∈ H and every element γ of Möb+(H).
We now consider how µγ behaves under composition of elements of
Möb+(H).



Let γ and ϕ be two elements in Möb+(H).

µγ◦ϕ(z) = ρ(z)− ρ((γ ◦ ϕ)(z))|(γ ◦ ϕ)′(z)|
= ρ(z)− ρ((γ ◦ ϕ)(z))|γ′(ϕ(z))||ϕ′(z)|
= ρ(z)− ρ(ϕ(z))|ϕ′(z)|+ ρ(ϕ(z))|ϕ′(z)|
− |ρ((γ ◦ ϕ)(z))|γ′(ϕ(z))||ϕ′(z)|

= µϕ(z) + µγ(ϕ(z))|ϕ′(z)|.

In particular, if µγ ≡ 0 for every γ in a generating set for Möb+(H),
then µγ ≡ 0 for every element γ of Möb+(H).



Möb(H) is generated by elements of the form m(z) = az + b for
a > 0 and b ∈ R, K(z) = −1

z , and B(z) = −z.

Note that the elements listed as generators are all elements of
Möb(H). Also note that every element of Möb(H) has either the
form

m(z) =
az + b
cz + d

where a, b, c, d ∈ R and ad − bc = 1, or the form

n(z) =
az + b
cz + d

,

where a, b, c, d is purely imaginary and ad − bc = 1.



If c = 0, then m(z) = a
d z + b

d . Since ad − bc = ad = 1, we have
a
d = a2 > 0.
If c 6= 0, then m(z) = f (K(g(z))), where g(z) = c2z + cd and
f (z) = z + a

c .
Note that B ◦ n = m, where m is an element of Möb(H), we can
write n = B−1 ◦m = B ◦m.



�en we consider a generator γ(z) = z + b for b ∈ R �rst. Since
γ′(z) = 1 for every z ∈ H, the condition imposed on ρ(z) is that

0 ≡ µγ(z) = ρ(z)− ρ(γ(z))|γ′(z)| = ρ(z)− ρ(z + b)

for every z ∈ H and every b ∈ R. �at is

ρ(z) = ρ(z + b)

for every z ∈ H and every b ∈ R. In particular, ρ(z) depends only on
the imaginary part y = Im(z) of z = x + iy.



To see this explicitly, suppose that z1 = x1 + iy and z2 = x2 + iy
have the same imaginary part, and write z2 = z1 + (x2 − x1). Since
x2 − x1 is real, we have ρ(z2) = ρ(z1).
Hence we may view ρ as a real-valued function of the single real
variable y = Im(z). Explicitly, consider the real-valued function
r : (0,∞)→ (0,∞) given by r(y) = ρ(iy), and note that
ρ(z) = r(Im(z)) for every z ∈ H.



Next we consider the generator γ(z) = az for a > 0. Since γ′(z) = a
for every z ∈ H, the condition imposed on ρ(z) is that

0 ≡ µγ(z) = ρ(z)− ρ(γ(z))|γ′(z)| = ρ(z)− aρ(az)

for every z ∈ H and every a > 0. �at is,

ρ(z) = aρ(az)

for every z ∈ H and every a > 0. In particular, we have

r(y) = ar(ay)

for every y > 0 and every a > 0. Interchanging the roles of a and y,
we see that r(a) = yr(ay). Dividing through by y, we obtain

r(ay) =
1
y
r(a).



Taking a = 1, this yields that

r(y) =
1
y
r(1),

and r is completely determined by its value at 1.
Recalling the de�nition of r , we have the invariance of length under
Möb+(H) implies that ρ(z) has the form

ρ(z) = r(Im(z)) =
c

Im(z)
,

where c is an arbitrary positive constant.



We now take the transformations K(z) = − 1
z and B(z) = −z into

our consideration.
Since K ′(z) = 1

z2 , the condition imposed on ρ(z) is that

0 = µK(z) = ρ(z)− ρ(K(z))|K ′(z)| = ρ(z)− ρ(−1
z

)
1
|z|2

.

Substituting ρ(z) = c
Im(z) and using

ρ(−1
z

) = ρ(
−z
|z|2

) =
c|z|2

Im(−z)
=

c|z|2

Im(z)
,

we obtain

ρ(z)− ρ(−1
z

)
1
|z|2

=
c

Im(z)
− c|z|2

Im(z)
1
|z|2

=
c

Im(z)
− c

Im(z)
= 0.



Note that B′(z) is not de�ned. So we cannot check by doing similar
calculations like in K(z). Instead we want to show

length(B ◦ f ) = length(f ).

Note that B ◦ f (t) = −x(t) + iy(t). �en |(B ◦ f )′(t)| = |f ′(t)| and
Im(B ◦ f )(t) = y(t) = Im(f (t)), and so

length(B ◦ f ) =

∫ b

a

c
Im((B ◦ f )(t))

|(B ◦ f )′(t)|dt

=

∫ b

a

c
Im(f (t))

|f ′(t)|dt = length(f ).

�erefore we have the following theorem:



�eorem 4

For every positive constant c, the element of arc-length

c
Im(z)

|dz|

on H is invariant under the action of Möb(H). �at is, for every
piecewise di�erentiable path f : [a, b]→ H and every element γ of
Möb(H), we have that

lengthρ(f ) = lengthρ(γ ◦ f ).

However, nothing we have done to this point has given us a way of
determining a speci�c value of c. In fact, it is not possible to specify
the value of c using solely the action of Möb(H). To avoid carrying c
through all our calculations, we set c = 1.



Example

For a real number λ > 0, let Aλ be the Euclidean line segment
joining −1 + iλ to 1 + iλ, and let Bλ be the hyperbolic line segment
joining −1 + iλ to 1 + iλ. Cauculate the lengths of Aλ and Bλ with
respect to the element of arc-length c

Im(z) |dz|.

Solution.
We parametrize Aλ by the path f : [−1, 1]→ H given by
f (t) = t + iλ.Since Im(f (t)) = λ and |f ′(t)| = 1, we see that

length(f ) =

∫ 1

−1

c
λ
dt =

2c
λ
.



Bλ lies on the Euclidean circle with Euclidean centre 0 and Euclidean
radius

√
1 + λ2. �e Euclidean line segment between 0 and 1 + iλ

makes angle θ with the positive real axis, where cos(θ) = 1√
1+λ2

. So
we can parametrize Bλ by the path g : [θ, π − θ]→ H given by
g(t) =

√
1 + λ2eiθ . Since Im(g(t)) =

√
1 + λ2sin(θ) and

|g′(t)| =
√
1 + λ2, we see that

length(g) =

∫ π−θ

θ
c csc(t)dt = c ln[

√
1 + λ2 + 1√
1 + λ2 − 1

].





De�nition 5

For a piecewise di�erentiable path f : [a, b]→ H, we de�ne the
hyperbolic length of f to be

lengthH(f ) =

∫
f

1
Im(z)

|dz| =
∫ b

a

1
Im(f (t))

|f ′(t)|dt.



Example

Take 0 < a < b and consider the path f : [a, b]→ H given by
f (t) = it. �e image f ([a, b]) of [a, b] under f is the segment of the
positive imaginary axis between ai and bi. Since Im(f (t)) = t and
|f ′(t)| = 1, we see that

lengthH(f ) =

∫
f

1
Im(z)

|dz| =
∫ b

a

1
t
dt = ln[

b
a

].



Proposition 6

Let f : [a, b]→ H be a piecewise di�erentiable path. �en the
hyperbolic length lengthH(f ) of f is �nite.
Note: this provides a way to estimate an upper bound for the
hyperbolic length of a path in H.



Proof

�ere exists a constant B > 0 so that the image f ([a, b]) of [a, b]
under f is contained in the subset

KB = {z ∈ H|Im(z) ≥ B}

of H. Given that f ([a, b]) is contained in KB, we can estimate the
integral giving the hyperbolic length of f . We �rst note that by the
de�nition of piecewise di�erentiable, there is a partition P of [a, b]
inito subintervals

P = [a = a0, a1], [a1, a2], ..., [an, an+1 = b]

so that f is di�erentiable on each subinterval [ak, ak+1].



In particular, its derivativ f ′ is continuous on each subinterval. By
the extreme value theorem for a continuous function on a closed
interval, there then exists for each k a number Ak so that

|f ′(t)| ≤ Ak ∀t ∈ [ak, ak+1].

Let A be the maximum of A0, ...,An. �en we have

lengthH (f ) =

∫ b

a

1
Im(f (t))

|f ′(t)|dt ≤
∫ b

a

1
B
A dt =

A
B

(b − a),

which is �nite.
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De�nition 7

A metric on a set X is a function

d : X × X → R

satisfying three conditions:
1. d(x, y) ≥ 0 for all x, y ∈ X , and d(x, y) = 0 if and only if x = y;
2. d(x, y) = d(y, x); and
3. d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality).



De�nition 8

Let X be a metric space with metric d. We say that (X , d) is a path
metric space if for each pair of points x and y of X we have

d(x, y) = inf {length(f ) : f ∈ Γ[x, y]},

and for each pair of points x and y of X , there exists a distance
realizing path in Γ[x, y], which is a path f in Γ[x, y] satisfying

d(x, y) = length(f ).



Example

(C, n) is a path metric space while (C− {0}, n) is not, where
n(x, y) = |x − y| on C and C− {0} = X respectively.

Consider two points 1 and -1 in (X , n). �e Euclidean line segment
joining 1 to -1 passes through 0, and so is not a path in X . Every
other path joining 1 to -1 has length strictly greater than
n(1,−1) = 2.



�eorem 9

(H, dH) is a path metric space. Moreover, the distance realizing path
in Γ[x, y] is a parametrization of the hyperbolic line segment joining
x to y.
(Proof: Omi�ed.)



Proposition 10

For every element γ of Möb(H) and for every pair x and y of points
of H, we have

dH(x, y) = dH(γ(x), γ(y)).

Note: We call γ is an isometry of H.

Proof.
Observe that γ ◦ f : f ∈ Γ[x, y] ⊂ Γ[γ(x), γ(y)]. To see this, take a
path f : [a, b]→ H in Γ[x, y], so that f (a) = x and f (b) = y. Since
γ ◦ f (a) = γ(x) and γ ◦ f (b) = γ(y), we have γ ◦ f lies in
Γ[γ(x), γ(y)].



Since lengthH(f ) is invariant under the action of Möb(H), we have

lengthH(γ ◦ f ) = lengthH(f )

for every path f in Γ[x, y], and

dH(γ(x), γ(y)) = inf {lengthH(g) : g ∈ Γ[γ(x), γ(y)]}
≤ inf {lengthH(γ ◦ f ) : f ∈ Γ[x, y]}
≤ inf {lengthH(f ) : f ∈ Γ[x, y]} = dH(x, y).



Since γ in invertible and γ−1 is an element of Möb(H), we may
repeat the argument to see that

{γ−1 ◦ g|g ∈ Γ[γ(x), γ(y)]} ⊂ Γ[x, y],

and hence

dH(x, y) = inf {lengthH(f ) : f ∈ Γ[x, y]}
≤ inf {lengthH(γ−1 ◦ g) : g ∈ Γ[γ(x), γ(y)]}
≤ inf {lengthH(g) : g ∈ Γ[γ(x), γ(y)]} = dH(γ(x), γ(y)).

�erefore we have dH(x, y) = dH(γ(x), γ(y)) and this completes the
proof.



We now proceed to calculate the geodesics in H. Geodesics is the
paths of shortest distance in H. In this section we will show that the
imaginary axis is a geodesic. �en we will claim that any vertical
straight line and any circle meeting the real axis orthogonally is also
a geodesic. In here we denoteH the set of semi-circles orthogonal to
R and the vertical lines in the upper half-plane H.



Proposition 11

Let a < b. �en the hyperbolic distance between ia and ib is log b
a .

Moreover, the vertical line joining ia to ib is the unique path
between ia and ib ith length log b

a ; any other path from ia to ib has
length strictly greater than log b

a .



Proof
Let δ(t) = it, a ≤ t ≤ b. �en δ is a path from ia to ib. Clearly
|δ′(t)| = 1 and Im(δ(t) = t so that

lengthH(δ) =

∫ b

a

1
t
dt = log

b
a
.

Now let δ(t) = x(t) + iy(t) : [0, 1]→ H be any path from ia to ib.
�en

lengthH(δ) =

∫ 1

0

√
x′(t)2 + y′(t)2

y(t)
dt

≥
∫ 1

0

|y′(t)|
y(t)

dt

≥
∫ 1

0

y′(t)
y(t)

dt

= logy(t)|10

= log
b
a
.



Note:
For the �rst inequality, equality holds when x′(t) = 0. �is happens
when x(t) is a constant, that is we have a path δ which is a vertical
line joining ia to ib.
For the second inequality, equality holds when |y′(t)| = y′(t). �is
happens when y′(t) is positive for all t. �is means the path δ
travels ’straight up’ the imaginary axis from ia to ib without
doubling back on itself.
�erefore, we have shown that lengthH(δ) ≥ log b

a in general.
Equality holds when δ is the vertical path joining ia to ib.



Proposition 12

Let H ∈ H. γ(H) ∈ H.

Proof.
Recall a vertical line or a circle with a real centre in C is given by an
equation of the form

αzz + βz + βz + γ = 0

for some α, β, γ ∈ R. Let

w = γ(z) =
az + b
cz + d

.

�en
z =

dw − b
−cw + a

.



�en we have

α(
dw − b
−cw + a

)(
dw − b
−cw + a

) + β(
dw − b
−cw + a

) + β(
dw − b
−cw + a

) + γ = 0.

Hence

α(dw − b)(dw − b) + β(dw − b)(−cw + a)

+β(dw − b)(−cw + a) + γ(−cw + a)(−cw + a) = 0.

Expanding this gives

(αd2 − 2βcd + γc2)ww + (−αbd + βad + βbc − γac)w
+(−αbd + βad + βbc − γac)w + (αb2 − 2βab + γa2) = 0.

�is has the form α′ww + β′w + β′w + γ′ with α′, β′, γ′ ∈ R, which
is the equation of either a vertical line or a circle with real centre.



Lemma 13

Let H ∈ H. �en there exists γ ∈ Möb(H) such that γ maps H
bijectively to the imaginary axis.



Proof

Case 1: If H is the vertical line Re(z) = a then the translation
z 7→ z − a is a Möbius transformation of H that maps H to the
imaginary axis Re(z) = 0.
Case 2: Let H be a semi-circle with end points ζ−, ζ+ ∈ R, ζ− < ζ+.
First note that, the imaginary axis is characterised as the unique
element of H with end-points at 0 and∞. Consider the map

γ(z) =
z − ζ+
z − ζ−

.

As −ζ− + ζ+ > 0, this is a Möbius transformation of H. Note that
γ(H) ∈ H . Clearly γ(ζ+) = 0 and γ(ζ−) =∞, so γ(H) must be the
imaginary axis.



Lemma 14

Let H ∈ H and let z0 ∈ H . �en there exists a Möbius transformation
of H that maps H to the imaginary axis and z0 to i.



Proof

Proceed as in the proof of the previous Lemma, we obtain a
Möbius transformation γ1 ∈ Möb(H) mapping H to the imaginary
axis. Now γ1(z0) lies on the imaginary axis. For any k > 0, the
Möbius transformation γ2(z) = kz maps the imaginary axis to itself.
For a suitable choice of k > 0 it maps γ1(z0) to i. �e composition
γ = γ2 ◦ γ1 is the required Möbius transformation of H.



�eorem 15

�e geodesics in H are the semi-circles orthogonal to the real axis
and the vertical straight lines. Moreover, given any two points in H
there exists a unique geodesic passing through them.



Proof

Let z, z′ ∈ H. �en we can always �nd a unique element of H ∈ H
containing z, z′. If z and z′ have the same real part then H will be a
vertical straight line, otherwise H will be a semi-circle with a real
centre. Let δ be any path from z to z′.
Apply Möbius transformation γ ∈ Möb(H) using Lemma 13,
γ(z), γ(z′) lie on the imaginary axis. �en γ ◦ δ is a path from γ(z)
to γ(z′). We have lengthH(δ) = lengthH(γ ◦ δ) by Proposition 2.



�e imaginary axis is the unique geodesic passing through γ(z) and
γ(z′) by Proposition 11. Hence lengthH(γ ◦ δ) achieves its in�mum
when γ ◦ δ is the arc of imaginary axis form γ(z) to γ(z′).
Hence lengthH(δ) achieves in�mum when γ ◦ δ is the imaginary axis
from γ(z) to γ(z′). �is is when δ is the image under γ−1 of the
imaginary axis from γ(z) to γ(z′). As γ−1 ∈ Möb(H), it follows
from Proposition 12 that δ is an arc of straight line or semi-circle
with real centre passing through z, z′.



We now have a method to calculate the hyperbolic distance between
a pair of points in H in theory. �at is, given a pair of points x and y
in H, �nd or construct an element γ of Möb(H) so that γ(x) = iµ ad
γ(y) = iλ both lie on the positive imaginary axis. �en determine
the values of µ and λ to �nd the hyperbolic distance

dH(x, y) = dH(µi, λi) = |ln[
λ

µ
]|.

Note that here we use the absolute value, as we have made no
assumption about whether λ < µ or µ < λ.



Example

Consider the two points x = 2 + i and y = −3 + i. �e hyperbolic
line l passing through x and y lies in the Euclidean circle with
Euclidean centre − 1

2 and Euclidean radius
√
29
2 . In particular, the

endpoints at in�nity of l are

p =
−1 +

√
29

2
and q =

−1−
√
29

2
.



Set γ(z) = z−p
z−q . �e determinant γ is p − q > 0, so γ lies in

Möb+(H). Since by construction γ takes the endpoints at in�nity of
l to the endpoints at in�nity of the positive imaginary axis, namely 0
and∞, we see that γ takes l to the positive imaginary axis. We see
that

γ(2 + i) =
2 + i − p
2 + i − q

=
p − q

(2− q)2 + 1
i

and
γ(−3 + i) =

−3 + i − p
−3 + i − q

=
p − q

(3 + q)2 + 1
i.



So we have

dH(2 + i,−3 + i) = dH(γ(2 + i), γ(−3 + i))

= ln[
(2− q)2 + 1
(3 + q)2 + 1

]

= ln[
58 + 10

√
29

58− 10
√
29

]

which is approximately 3.294.



We transfer the hyperbolic element of arc-length from H to D by
making the following observation. For any piecewise di�ernetiable
path f : [a, b]→ D, the composition n ◦ f : [a, b]→ H is a piecewise
di�erentiable path into H. We know how to calculate the hyperbolic
length of n ◦ f , namely by integrating the hyperbolic element of
arc-length 1

Im(z) |dz| on H along n ◦ f . So, we de�ne the hyperbolic
length of f in D by

lengthD(f ) = lengthH(n ◦ f ).



�eorem 16

�e hyperbolic length of a piecewise di�erentiable path
f : [a, b]→ D is given by

lengthD(f ) =

∫
f

2
1− |z|2

|dz|.



Proof

We consider the map h : H→ D de�ned by

h(z) =
z − i
iz − 1

.

Note that h maps H bijectively to D, as well as ∂H to ∂D bijectively.
Let g(z) = h−1(z). �en g maps D to H and has the formula

g(z) =
−z + i
−iz + 1

.



Let δ : [a, b]→ D be a (parametrisation of a) path in D. �en
g ◦ δ : [a, b]→ H is a path in H. �e length of g ◦ δ is given by:

lengthH(g ◦ δ) =

∫ b

a

|(g ◦ δ)′(t)|
Im(g ◦ δ(t))

dt =

∫ b

a

|g′(δ(t))||δ′(t)|
Im(g ◦ δ(t))

dt

by chain rule. We have

g′(z) =
−2

(−iz + 1)2

and
Im(g(z)) =

1− |z|2

| − iz + 1|2
.



Hence

lengthH(g ◦ δ) =

∫ b

a

2
1− |δ(t)|2

|δ′(t)|dt.

�en

lengthD(δ) =

∫ b

a

2
1− |δ(t)|2

|δ′(t)|dt =

∫
δ

2
1− |z|2

.



�e distance between two points z, z′ ∈ D is de�ned by taking the
length of the shortest path between them. We denote
dD(z, z′) = inf {lengthD(δ)|δ is a piecewise continuously
di�erentiable path from z to z′}.
As we have used h to transfer the distance function on H to a
distance function on D, we have

dD(h(z), h(w)) = dH(z,w).



Proposition 17

�e geodesics in the Poincare disc are the diameters of D and the
arcs of the circles in D that meet ∂D at right-angles.



Proof

One can show that h is conformal, i.e. h preserves angles. Using the
characterisation of lines in C to circles and lines in C. Recall that h
maps ∂H to ∂D. Recall that the geodesics in H are the arcs of the
circles and lines that meet ∂H orthogonally. As h is conformal, the
image in D of a geodesic in H is a circle or line that meets ∂D
orthogonally.





In the upper half-plane model H we o�en map a geodesic H to the
imaginary axis and a point z0 on that geodesic to the point i. �e
following is the analogue of the result in the Poincare disc model.



Proposition 18

Let H be a geodesic in D and let z0 ∈ H . �en there exists a
Möbius transformation of D that maps H to the real axis and z0 to 0.



References

Hyperbolic geometry, by James W. Anderson, Springer, 1999.
(Chapter 3.1-3.5)
Lecture notes by C. Walkden
(Chapter 3-6)



CLASSIFICATION OF MOBIUS MAP

 



PREREQUISITE KNOWLEDGE

Topology

MATH3070
One-point compactification, 
Homeomorphism, 
Connectedness

Algebra

MATH2070, MATH3030
Group, Quotient Space, 
Matrix, Isomorphism

Complex calculus

MATH2230, MATH4060
Derivative of Analytic 
Function
Hyperbolic Function



ONE-POINT COMPACTIFICATION

• Let ! be a topological space with topology " such 
that ! is locally compact and Hausdorff. 

• Then there exists topological space !∗ = ! ∪ {∞}
such that !∗ is compact and open sets in ! are 
also open sets in !∗
• !∗ is called the one-point compactification of !



CONNECTEDNESS

• Let (!, ") be topological space and + ⊂ !
• + -. /0112/324 if there are no disjoint, non-

empty open set U, V such that + = 7 ∪ 8

Remark:  The connectedness of any set is preserved by homeomorphism (or continuous map)



QUOTIENT SPACE

• Let 9 be a non-empty set and ~ be an equivalence 
relation

• [<] = {> ∈ 9: <~>} is called the equivalence class 
of <
• Then the set of all equivalence class in S is the 

quotient set (space)



MATRIX GROUP

• Let ! be positive integer and " be a field

• General Linear Group #$ !, " = {( ∈ "!×!: |(| ≠ 0}
• Special Linear Group /$ !, " = {A ∈ "!×!: ( = 1}



GROUP ISOMORPHISM

• Let !,∗ and (%,+) be two groups

• (: ! → % is a group isomorphism if
• A B ∗ D = A B + A D
• A is bijective



CLASSIFICATION: “WHICH SUBSETS OF THE OBJECT 
SHARE SOME COMMON CHARACTERISTICS?”

Linear Algebra
Classification Vector Space 

according to dimension

Rank-nullity Theorem

Group Theory
Classification of finite simple group

Geometry
Classification of Isometries in 

Euclidean Plane

Classification of Isometries in 
Hyperbolic Plane 



TARGET SPACE: 
ℂ"

• ℂ! = ℂ ∪ {∞}
• One-point 

Compactification of ℂ
• Homeomorphic to 

Riemann Sphere 



MOBIUS GROUP G0D(ℂ")

• Mobius Transformation is a map ): ℂ! → ℂ! in the form of ) , = "#$%
&#$' with 

a, b, c, d ∈ ℂ 34 − 67 ≠ 0
• Basic Properties Mentioned Before
• The set of all Mobius map forms a group #$%(ℂ!) with operation defined as 

combination of map

• Angle Preserving

• Act transitively on ordered triples of distinct complex number

• Map circle to circle

• Homeomorphism 



MATRIX REPRESENTATION OF G0D(ℂ")

• Intuition:
• The map is determined by 4 coefficient 3, 6, 7, 4
• Represent them by 2×2 matrix 3 6

7 4 and the combination of map can 

become operation on matrix!

• The operation is actually matrix multiplication ! [Check it as an exercise]

• Question: 234 ℂ) ≅ #$ 2, ℂ ?



LIMITATION OF HI(2, ℂ)

• Consider * %
+ , and -* -%

-+ -, ./ 01 2, ℂ

• Obviously, they are different elements in 01 2, ℂ
• But they represent same Mobius map "#$%

&#$' =
("#$(%
(&#$('

• We solve this problem by using 51(2, ℂ) instead

• The ambiguity in matrix representation is reduced to only differ by ± signs.

Remark:  Although the representation in 51(2, ℂ) is not unique, it is concrete enough to 
tackle with many problems.



G0D(ℂ") ≅ L9I(2, ℂ)

• To solve the ambiguity in ± signs, we introduce the relation ~:9~ − 9
• The quotient set of 51(2, ℂ) under ~ is denoted as ;51(2, ℂ)
• It is not hard to observe that both groups are isomorphic to each other



BEFORE NEXT SECTION…

• Every map "#$%&#$' ∈ #$%(ℂ!) can be represented by *′ %′
+′ ,′ >.?ℎ *),) −

%)+) = 1
• The composition of map is just multiplication of matrix

• Some properties of matrix are vitally important for classifying #$%(ℂ!)



CONJUGATE AND INVARIANT

• Definition:

• <=> ?, @ ∈ AB6(ℂ!) ? is conjugate of @ if 
∃F ∈ AB6(ℂ!) such that ? = F@F()

• Example:

• 1 0
2 1 = 0 −H

−H −H
1 2
0 1

−2H H
H 0

• Equivalence Relation !

• Exercise: Verify symmetricity, transitivity and 
reflexive property



FIXED POINT UNDER CONJUGATION

• Theorem 1:

• Suppose 9 = 5B5*+ and C, is a fixed point of B.  Then 5(C,) is a fixed point of 
9.

• Proof:

• 9 5 C, = 5B5*+ C, = 5B C, = 5(C,)
• By Theorem 1, number of fixed point is invariant under Conjugation.



TRACE IS INVARIANT

• Theorem 2:

• Suppose 9, B are conjugate. Then EF 9 = EF(B)
• Proof:

• Suppose 9 = 5B5*+

• EF 9 = EF 5B5*+ = EF 55*+B = EF(B)



TRACE AND NUMBER OF FIXED POINTS

• Theorem 3

• <=> ? ∈ AB6(ℂ!) with ? ≠ H4
• ? has one or two fixed points. ? has one fixed point if and only if IJ ? = ±2
• Proof:

• Consider Quadratic Equation "#$%&#$' = , ↔ 7,* + 4 − 3 , − 6 = 0
• So the number of roots of the equation is determined by 4 − 3 * + 467 =
4 + 3 * − 4 = IJ I * − 4

• Hence, A has one fixed point when IJ I = ±2 and having two fixed points 
otherwise



SUMMARY

• Some maps in #$%(ℂ!) are equivalent in terms of conjugate relation

• In that equivalence class, they sharing some common characteristics:

• Same Trace

• Same number of fixed points

• Mapping of Fixed Point under Conjugation

• The relation between Trace and Numbers of Fixed Points



CASE 1: ONE FIXED POINT MN

• Through Conjugation F = )
#(#!

, we can map the fixed point to ∞
• Suppose I ∈ AB6(ℂ!) with ∞ as only fixed point

• Represent I as 3 6
7 4 in F<(2, ℂ) or OF<(2, ℂ)

• I ∞ = ∞ implies 7 = 0
• 34 − 67 = 1 implies 4 = )

"
• IJ I = ±2 implies 3 = ±1
• Hence, I , = , ± 6 [Behave like translation in ℝ+]
• We call this type of transformation O3J36BQH7



CASE 2: TWO FIXED POINT MR , MS

• Through conjugation F = #(#"
#(##, we can map the fixed points to 

0 3T4 ∞
• Suppose I ∈ AB6(ℂ!) has 0 3T4 ∞ as fixed points

• I ∞ = ∞ implies 7 = 0
• 34 − 67 = 1 implies 4 = )

"
• I 0 = 0 implies 6 = 0
• Hence I , = 3*,
• Denoted U = 3*, we can classify them according nature of U



HYPERBOLIC 

• If H ∈ ℝ */, |H| ≠ 1Then E is 
called KLMNF%$O.+

• E C = HC behave like scaling in 
ℝ- because H ∈ ℝ



ELLIPTIC

• If H = 1Then we call E to be 
NOO.M?.+

• Using Poler Form C = N./0 # 1 , 
E C = HC is actually rotation of 
arg(H) about the origin.



LOXODROMIC

• The remains cases are classified as O$S$,F$T.+
• Write H = H ×N./0 2 1 , we can observe that O$S$,F$T.+ is just composition 

of NOO.M?.+ transformation N./0 2 1C and ℎLMNF%$O.+ transformation |H|C

tinit



CLASSIFICATION SCHEME

., ≠ E ∈ #$%(ℂ!) Number of Fixed 
Points?

Parabolic !

What is nature of H

Hyperbolic !

Elliptic !

Loxodromic



CLASSIFICATION BY TRACE

• If EF E = ±2Then we immediately know that E is M*F*%$O.+
• Similar thought applied to other cases !

• E C = HC = H 0
0 H*+

• The value H is called TVO?.MO.NF of E



TRACE OF HYPERBOLIC MAP

• Let	 O = log(H)

• Then	EF E = N
!
" + N*

!
" = 2 cosh 3

4

• KLMNF%$O.+ ⟺ H ∈ ℝ, H ≠ 1 ⟺ O = ℝ + 2/d. ⟺ EF E > 2



TRACE OF ELLIPTIC MAP

• Let	 O = log(H)

• Then	EF E = N
!
" + N*

!
" = 2 cosh 3

4

• fOO.M?.+ ⟺ H = 1, H ≠ 1 ⟺ O = .g, g = arg H ⟺ EF E = 2 cos g ⟺
EF E ∈ (−2,2)



SUMMARY

• Given any H4 ≠ I ∈ AB6(ℂ!), we can classify it according to its trace.

Trace Type

EF E = ±2 ;*F*%$O.+
EF E ∈ ℝ, |EF E | > 2 KLMNF%$O.+
EF E ∈ ℝ, EF E < 2 fOO.M?.+

EF E ∉ ℝ 1$S$,F$T.+



FROM ℂ" TO N B14 O

• #$% K = E ∈ #$% ℂ! ∶ E K ⊂ K
• #$% l = E ∈ #$% ℂ! ∶ E l ⊂ l
• Exercise:  Verify that #$%(K) and #$%(l) are subgroups of #$%(ℂ)
• The classification of #$% l ,#$%(K) are easy if we know their matrix representation !



G0D(N)

This result is proved by Team 2. The major application of 
this theorem is that ∀I ∈ AB6 W , IJ I = 2X= Y ∈ ℝ



MAP FROM N TO O

• Theorem 4:

• The map Z: , → #(,
#$, on ℂ! satisfy Z [ = W

• Proof: 

• Z ∞ = 1, Z 1 = −H, Z 0 = −1
• Hence, Z map the circle of infinity \[ to \W
• \W and \[ separate Z! into two connected component

• Hence, Z [ = W BJ Z [ = ℂ!\(W ∪ \W)
• Z H = 0 implies Z [ = W



CAYLEY TRANSFORMATION

• Definition :

• 9:: → < defined by C z = mno
mpo is called the Cayley 

transformation from : to <
• The map is well-defined by Theorem 4



MATRIX REPRESENTATION OF G0D(O)

• Theorem 5:

• ∀r ∈ #$% K , r has the representation * %
+ , , *, %, +, , ∈ s

• Proof:

• Define ℎ:K → K %L ℎ C = #*56(8 1 )
:;(8 1 )

• Since uT ℎ C = :; #
:; 8 1 and uT C > 0, uT r . > 0

• Hence, ℎ is well-defined



THEOREM 5 (CONT.)

• Define v:K → K %L v = cos(g) sin(g)
−sin(g) cos(g) for some g ∈ s

• Suppose C = S + L. ∈ K, ?ℎN/ >F.?N cos g = +, sin g = x
• v C = &<$=$>=1

&*<=*>=1 =
+

&*<=*>=1 " +S + x + Lx. + − Sx + Lx

• So uT v C = >
&*<=*>=1 " (+

4+x4) > 0

• Hence, v is well-defined.

• Define E = v ∗ ℎ ∗ r ∈ #$%(K)



THEOREM 5 (CONT.)

• Direct computation yields, E . = ., E) . = 1
• Using Theorem 4, 9 = zEz*+ ∈ #$%(l) and 9 0 = 0, 9) 0 = 1

• Since 9 = "#$%
?%#$ ?" implies 9) = +

?%#$ ?"
4

* 4 − % 4

• As * 4 − % 4 = 1, 9) 0 = +
?"" = 1. Combine 9 0 = 0, 9) 0 = 1

• We have * = ±1, % = 0
• So 9 = .,
• By the invariant of fixed point, E = ., implies r = ℎ*+v*+

• So matrix representation of r will be product of matrix of ℎ*+, v*+



SUMMARY

^_`(a) ^_`(b)
3 6
7 4 , 34 − 67 = 1, 3, 6, 7, 4 ∈ ℝ 3 6

c6 c3 , 3 * − 6 * = 1
Hence, Trace of their representation is real !

Trace Type

EF E = ±2 ;*F*%$O.+
EF E ∈ s, |EF E | > 2 KLMNF%$O.+
EF E ∈ s, EF E < 2 fOO.M?.+



MORE ON HYPERBOLIC 
MAP

• KLMNF%$O.+ map are conjugate to 
* 0
0 +

"
, * ∈ ℝ

• So SL = + (KLMNF%$O*) is an invariant curves under  
KLMNF%$O.+ map

• Also, its fixed points should location on ~K or ~l



MORE ON 
ELLIPTIC MAP

• The conjugation with fixed point at 0 */, ∞ is a rotation.

• z.F+ON will be an invariant curve.

• Fixed point will be located at interior of K $F l



MORE ON PARABOLIC MAP

• Exercise:  Why this type of maps is called 
;*F*%$O.+?

• The fixed point located at ~K $F ~l



SUMMARY

• Matrix representation of group of Mobius 
Transformation

• Properties related to Conjugation, Fixed Point, Trace

• Classification of G0D(ℂ") according to number of 
fixed point or trace

• Classification of !"#(%), !"#(')



CONVEX SET IN !



P01Q2< .23 -1 O

• A set Z is 7BTd=e in [ if ∀e, f ∈
Z, the hyperbolic line Q-. are 
contained in Z

P01Q2< .23 -1 ℝg

• A set Z is 7BTd=e HT X+ if 
∀e, f ∈ Z, Q-. ⊂ Z

• Parametrization: ∀e, f ∈ Z, > ∈
0,1 , >e + 1 − > f ∈ Z



I-12 -1 O

• Theorem 1:

• Every Hyperbolic line is convex

I-12 -1 ℝg

• Theorem 1:

• Every Euclidean line is convex



OBSA 9TB/2 -1 O

• Every hyperbolic line divide [
into two connected component 
i), i*

• i), i* is called open half-plane

• i, ∪ O is called closed half-plane

OBSA 9TB/2 -1 ℝg

• A line or an affine subspace of ℝ+
are called ℎfl=JlQ3T=

• Hyperplane can be parametrized 
as P = {< 3, e > = 7: e ∈ X+}

• The hyperplane divide ℝ+ into 
two separate connected 
component i), i*

• i), i* is called open half-space

• i, ∪ O is called closed half-space



!"#$%& '()* +,(-% .# '

• Theorem 2:

• Every half-plane is convex

!"#$%& '()* +,(-% .# ℝ!

• Theorem 2:

• Every half-space is convex



UT2VB3-01 01
/01Q2< .23 -1 O

• In general, intersection of convex 
set is convex

• While, union of convex set is not 
convex

UT2VB3-01 01
/01Q2< .23 -1 ℝg

• In general, intersection of convex 
set is convex

• While, union of convex set is not 
convex



LV0W2/3-01 -1 O

• Theorem 4:

• Let Z be closed, convex set in [, 
, ∈ [.

• Then ∃! e ∈ Z, 4/ e, , =
4/(,, Z)

LV0W2/3-01 -1 ℝg

• Theorem 4:

• Let Z be closed, convex set in ℝ+, 
, ∈ ℝ+.

• Then ∃! e ∈ Z, 4 e, , = 4(,, Z)



CHARACTERIZATION OF CONVEX SET

• Theorem 5:

• Let z ⊂ K
• z is convex ⇔ z is intersection of half-planes



REFERENCE

• Hyperbolic geometry, by James W. Anderson, Springer, 1999.
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